El nuevo procedimiento permite clasificar de forma más precisa que los métodos actuales si el deterioro cognitivo leve que en muchas ocasiones precede a la enfermedad del Alzheimer progresará o permanecerá estable, según un reciente estudio de la UOC.
El deterioro cognitivo leve es una fase que precede al Alzheimer, pero no todas las personas que lo sufren terminan desarrollando esta enfermedad neurodegenerativa. Ahora, un trabajo liderado por científicos de la Universidad Oberta de Catalunya (UOC) ha conseguido distinguir con gran precisión aquellas en las que el deterioro es estable y quiénes, sin embargo, progresarán hacia la enfermedad.
Tal y como incican desde la UOC, esta nueva técnica, que utiliza métodos de Inteligencia Artificial específicos para el reconocimiento de imágenes de resonancia magnética, supera en eficacia al resto de métodos usados en la actualidad. Se trata de un hallazgo de gran relevancia si se tiene en cuenta que la enfermedad de Alzheimer es la principal causa de demencia en el mundo. Aunque no tiene cura, la detección precoz es clave para poder desarrollar tratamientos eficaces que actúen antes de que su avance sea irreversible.
El deterioro cognitivo puede progresar y empeorar o mantenerse
La enfermedad de Alzheimer afecta a más de 50 millones de personas en el mundo, y el envejecimiento de la población hace que puedan ser muchas más en las próximas décadas. Aunque suele desarrollarse sin síntomas durante muchos años, generalmente viene precedida de lo que se conoce como deterioro cognitivo leve, mucho menor que el que presentan los enfermos pero mayor que el esperable por su edad.
Como señala Mona Ashtari-Majlan, investigadora responsable del estudio, «estos pacientes pueden progresar y empeorar o mantenerse en el mismo estado con el tiempo. Por tanto, es importante distinguir entre el deterioro cognitivo progresivo o estable para prevenir la rápida progresión de la enfermedad”.
Y es que, identificarlos correctamente podría servir para mejorar la calidad de los ensayos clínicos con los que se prueban tratamientos, y que cada vez más buscan dirigirse a las fases iniciales de la enfermedad. Para conseguirlo, los investigadores usaron un método llamado red neuronal convolucional de múltiples flujos, una técnica de Inteligencia Artificial y de aprendizaje profundo muy útil para el reconocimiento y clasificación de imágenes.
“Primero comparamos resonancias magnéticas de pacientes con enfermedad de Alzheimer y personas sanas para encontrar diferentes puntos de referencia”, explica Ashtari-Majlan. Tras «entrenar» el sistema, lo ajustaron con imágenes de resonancia de personas que ya habían sido diagnosticadas con deterioro cognitivo estable o progresivo y en las que las diferencias son mucho más pequeñas. En total, casi 700 imágenes procedentes de bases de datos públicas fueron utilizadas.
El proceso permite, según la investigadora, “superar la complejidad que suponen para estos métodos los cambios estructurales tan sutiles que se dan entre ambas formas de deterioro cognitivo leve, mucho menores que los que hay entre un cerebro normal y otro afectado por la enfermedad. Además, el método propuesto podría resolver el problema del pequeño tamaño muestral, ya que el número de resonancias magnéticas para los casos de deterioro cognitivo leve es mucho menor que para los de Alzheimer”.
En definitiva, este nuevo método estudiado por los investigadores de la Universidad Oberta de Catalunya (UOC) permite distinguir y clasificar las dos formas de deterioro cognitivo leve con una precisión cercana al 85%.